
Team 4 Mayday
Foundation of Software Engineering Section B

Simrata Gandhi
Keerthana Thangaraju

Jason Wang
Angel Fu

AGENDA
• Vision

• Functionalities

• Software Architecture

• Software Engineering Practices

• Quality Attributes

• Challenges

• Takeaways

VISION

We want to help people to connect with each other when

there are no connections to contact others due to natural

disasters or other emergencies by building the Mayday
emergency chatroom.

CONNECT THE UNCONNECTED

FUNCTIONALITIES
• First-aid Advice
• Join Community

• Chat Publicly

• Chat Privately

• Share Status

• Post Announcement

• Search Information

• Measure Performance

• Administer User Profile

FIRST-AID ADVICE
Goal: Allow users to ask for help from nearby online users

and look up basic first-aid advice in the chatroom

FIRST-AID ADVICE CONT’D

Allows maps to be rendered in real
time on web and mobile devices Plots markers on the map

FIRST-AID ADVICE CONT’D

User requests for help
from another user

The other user
agrees to help

FIRST-AID ADVICE CONT’D

Users can browse and search first-aid advice in the chatroom

SOFTWARE ARCHITECTURE

Before

• Client-server
• Event-based
• Repository
• Restful
• Socket used for

communication from
client and server

• No models
• Unstructured code

After so much pain

• Client-server
• Event-based
• Repository
• RESTful
• MVC
• Socket communication only

from server

SOFTWARE
ARCHITECTURE CONT’D

MVC WITH 
EXPRESS, EJS, SEQUELIZE

Express (Routing)

It provides easy routing
framework to manage

HTTP requests to create
RESTful APIs for our

application.

EJS (Views)
It allows us to create

partial views and we only
need to change the
content in the layout

using EJS.

Sequelize (Models)

It helps model Data
Access Objects for

SQLite tables.

SOFTWARE ENGINEERING
PRACTICES

PAIR PROGRAMMING • 2 members per team working on each module
• Improved efficiency, communication among team members

CONTINUOUS INTEGRATION
VERSION CONTROL

• Branching and merging on Github for every iteration to track changes
• Helped tracking issues on time

HYBRID: AGILE + KANBAN • Emphasis on value and also utilize time effectively to reduce waste

TESTING & COVERAGE
(Mocha, Grunt and Shippable)

• Integration tests and automated script for testing http get & post
requests

• Help to detect bugs early

OO ANALYSIS & DESIGN • Manage requirements

SOFTWARE ENGINEERING
PRACTICES CONT’D

Practices Missed Initially

•In process unit testing: Unable to
perform due to absence of Models
in code

•Refactoring: Lack of
modularization and unorganized
code structure

REFACTORING
Created models

Conducted in-process unit testing

Modified socket connections

Implemented REST API fully

Re-organized EJS files

Removed unused code and
Added comments for explanation

After we analyzed
our problems and
re-prioritized….

REFACTORING CONT’D

BEFORE AFTER

QUALITY ATTRIBUTES

USABILITY
• Implemented the MVC architectural pattern
• Allowed us to create synchronized views and provide intuitive

usability and responsiveness

SECURITY • Chatroom allows users to log in with credentials
• Validated the token on the backend to ensure security

REUSABILITY
• After refactoring our code and creating models with Sequelize,

we are able to reuse some of the code to reduce the
redundancy

CHALLENGES
• A gap between team members’ level of software

engineering skill

• Struggles during the transitions between the
previous iteration and the next one

• Not enough time spent on retrospective

TAKEAWAYS
• Helped out each other by answering questions and

holding code review sessions

• Slowed down and re-evaluated our code and the team

• Ensured to reduce technical debt during each iteration

• Prioritized functionalities before design due to time
constraints

